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grow to 27.5 million new cancer cases, 
with cancer-related mortality at an esti-
mated 16.3 million.[1] Cancer is the second 
leading cause of death in the United 
States, with ≈1.74 million new cancer 
cases and 600 000 cancer-related deaths 
in 2018 (American Cancer Society).[1,2] 
Despite extensive efforts by many research 
groups to improve the understanding of 
cancer biology, identify novel therapeutics, 
and push these advances into clinical prac-
tice, cancer remains a global burden to 
human healthcare and a prominent cause 
of death.

Malignant tumors often undergo the 
process of metastasis, disseminating 
cancer cells to distant locations in the 
body.[3] During metastasis, cancer cells 
leave the primary tumor site and travel to 
other regions of the body via the blood or 
lymphatic system, forming new tumors 
in other organs or tissues.[3] Metastatic 

tumors drastically increase patient mortality and decrease the 
efficacy of clinical treatments.[4] While patients diagnosed with 
localized tumors can often be successfully treated with surgery 
and/or radiation, with relatively high survival rates, a diag-
nosis of metastatic cancer often designates a terminal illness, 
with a five-year survival rate less than 20% for half of all cancer 

Cancer is one of the leading causes of death worldwide, despite the large 

efforts to improve the understanding of cancer biology and development 

of treatments. The attempts to improve cancer treatment are limited by 

the complexity of the local milieu in which cancer cells exist. The tumor 

microenvironment (TME) consists of a diverse population of tumor cells 

and stromal cells with immune constituents, microvasculature, extracellular 

matrix components, and gradients of oxygen, nutrients, and growth 

factors. The TME is not recapitulated in traditional models used in cancer 

investigation, limiting the translation of preliminary findings to clinical 

practice. Advances in 3D cell culture, tissue engineering, and microfluidics 

have led to the development of “cancer-on-a-chip” platforms that expand the 

ability to model the TME in vitro and allow for high-throughput analysis. The 

advances in the development of cancer-on-a-chip platforms, implications for 

drug development, challenges to leveraging this technology for improved 

cancer treatment, and future integration with artificial intelligence for 

improved predictive drug screening models are discussed.
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1. Introduction

Cancer is a leading cause of death worldwide, with an 
estimated 17.0 million new cancer cases and 9.5 million 
cancer-related deaths reported by the International Agency for 
Research on Cancer in 2018.[1] By 2040, global incidence will 
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sites.[5] The development of cancer metastases often neces-
sitates the use of chemotherapeutic drugs, which enter the 
body’s circulation and travel, inflicting cytotoxicity on tumor  
cells and therefore impacting tumor growth and, ideally, curing 
the patient.[6]

The staggeringly high mortality and morbidity rates associ-
ated with cancer highlight the need for more efficacious thera-
pies. Drug discovery and development for cancer treatment has 
been slow in its clinical translation due to a high attrition rate 
during drug development.[7] Despite robust research efforts, 
only 5.1% of anticancer drugs that enter phase I clinical trials 
receive Food and Drug Administration (FDA) approval.[8] One 
reason for this low translation rate is the poor ability of disease 
and drug screening models to predict patient outcomes.[7] 
The improved ability to more accurately and rapidly identify 
drug candidates and eliminate ineffective drugs as potential 
candidates would drastically improve the drug development 
process and accelerate the rate of clinical translation.[7,9]

A central challenge in translating research advances from 
preclinical models to patient therapies and treatments is the 
immense complexity of the tumor microenvironment (TME). 
The TME is a complex niche created by each tumor and influ-
enced by a tumor’s interactions.[10,11] It is comprised of the non-
cancerous cells within a tumor that support tumor cell growth. 
The TME consists of a heterogeneous population of stromal 
and immune cells, microvasculature, extracellular matrix 
(ECM), and the proteins produced and secreted by tumor cells. 
The TME is characterized by its specific mechanical proper-
ties and complex gradients of oxygen, nutrients, and growth 
factors. These components influence tumor biology and play 
a role in invasion, metastasis, and treatment outcomes.[12] 
A comprehensive review of TME components’ respective roles 
in these processes and cancer treatment can be found in previ-
ously published review papers.[10,13] Current preclinical models 
for anticancer drug screening fall into two categories, in vitro 
and in vivo models. The simplest, and most commonly used, 
in vitro model is the traditional 2D culture of immortalized 
cell lines.[14] 2D culture is relatively inexpensive and allows 
for high-throughput analysis and is therefore commonly used 
in studies aiming to elucidate cancer biology or identify novel 
chemotherapeutic agents. However, despite their advantages, 
these models subject cancer cells to artificially 2D growth 
conditions and lack key components of the TME that influ-
ence cancer biology and drug response, including the stroma,  
ECM, tumor mechanical properties, and intertumoral 
gradients.[14,15] As a result, the predictive value of these models 
is limited. Another traditional preclinical tool for cancer studies 
is in vivo animal models. Animal models for cancer mimic the 
tumor microenvironment to a greater fidelity than simplified 
2D cell culture.[16–18] These models are often used to study an 
individual patient’s tumor ex vivo via patient-derived xenograft 
(PDX) models. However, despite their advantages, these models 
have several limitations. While these models provide a 3D envi-
ronment, a comparison between two vastly different species 
cannot be made with high accuracy. As a result, there is often a 
disparity between the outcomes of cancer related drug studies 
in animal models and patient trials. In addition, animal studies 
are often cost prohibitive. Thus, an alternative model is needed 
to provide efficient and effective drug screening to guide the 
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initial selection of chemotherapeutic agents for cancer patients. 
This need drives the development of 3D models, which seek to 
integrate the advantages of in vivo and in vitro techniques for 
improved cancer studies and drug development.

Recently, much effort has been put into the development of 
organ-on-a-chip platforms that can recapitulate both the biology 
and physiology of in vivo human tumors.[7,19–21] The majority 
of these platforms are designed to mimic crucial functions of 
organs and tissues, enabling the investigation of pharmacoki-
netics and pharmacodynamics.[19] These approaches employ 
the use of multichannel, 3D microfluidic chips to simulate 
the mechanics, activity, and physiological response of organs. 
Cancer-on-a-chip models are at the frontier of nanomedicine 
and offer promising utility as sophisticated microsystems to 
elucidate the mechanisms of cancer biology and improve anti-
cancer drug development. As new organ-on-a-chip platforms 
are developed, becoming increasingly higher throughput, 
large data sets are generated, bringing forth new challenges 
and opportunities. The development of these high-throughput 
organ-on-a-chip platforms gives rise to the application of 
deep learning-based analysis processes for high-throughput 
drug screening, making way for a new avenue of cutting-edge 
research.[22] In this review, we will highlight seminal cancer-
on-a-chip papers and new advances in the field, incorporating 
discussion on key features of the TME and the challenges asso-
ciated with recapitulating its features. We will discuss recent 
applications of cancer-on-a-chip models for pathomorphological 
and drug development studies, with special emphasis on the 
integration of and challenges associated with combining these 
platforms with machine learning (ML) and data processing 
technologies. Future perspectives on how cancer-on-a-chip 
and machine learning algorithms can synergize to improve 
anticancer drug development will be considered.

2. Anticancer Drug Development and the Need 
for Improved Predictive Models

The anticancer drug development process starts with the iden-
tification of effective compounds via preclinical models. These 
compounds are then evaluated further in sequential human 
clinical trials to assess safety, dosing, and efficacy, comparing 
the drug in question to the current standard of care. Unfor-
tunately, the majority of compounds identified as effective in 
preclinical models are found to be not safe or efficacious in 
these later studies.[18,23] The low predictive value of preclinical 
models increases the cost and resources expended during the 
drug development process. Such clinical trial failures point to 
the need for improved preclinical models that mimic the TME 
with high fidelity.[1,18,23]

In addition to the challenges associated with current pre-
clinical models, progress in anticancer drug development is 
hindered by the complexity of cancer biology. Cancer biology 
is highly heterogeneous and complex on several levels: among 
tumor subtypes, individual patients, and separate tumors 
within one patient. Selection of chemotherapeutic agents is cur-
rently dominated by evidence generated from randomized clin-
ical trials (RCTs), in which patients are assigned to treatment 
groups by chance. Given the ongoing development of many new 

chemotherapeutics and the necessity to monitor the stability of 
previously developed agents, it is impossible to perform RCTs 
to investigate all FDA-approved drugs for each tumor type, let 
alone trials to investigate all drug combinations. An individual 
patient’s cancer biology is unique and tumors of the same his-
tologic subtype often show vastly different responses to thera-
pies. Thus, initiatives for precision, or personalized, medicine 
have emerged.[24] This emerging field is based on the principle 
that the genetic and molecular information of an individual 
patient can be used to deploy more effective, less toxic, and 
patient-specific treatments.[24] Furthermore, in order to person-
alize the chemotherapy regimens given to a patient and opti-
mize the chance of an effective response, there exists the need 
to develop robust models to perform drug screening for both 
general cancer subtypes and for an individual patient’s tumors.

3. Comparison of Preclinical Cancer Models

3.1. 2D Monoculture

In traditional 2D cultures, cells are grown as an adherent mon-
olayer in a culture dish, attached to the plastic dish surface.[25,26] 
Assays derived from 2D monolayers are easy to use, low cost, 
and high throughput. However, despite their advantages, these 
assays are quite limited in their predictive value. One such 
limitation is the inability of 2D cell cultures to mimic the native 
structure of tissues and tumors.[14,26] The 2D culture environ-
ment does not recapitulate the cell–cell and cell–environment 
interactions present in native tumors.[14,26] These interactions 
are fundamental to cell proliferation, cell differentiation, gene 
and protein expression, stimuli response, drug metabolism, 
and other cellular functions.[14,27] Another limitation of 2D 
culture models is that cells in an adherent monolayer have 
infinite, homogenous access to key nutrients, including 
oxygen and metabolites.[14,26] In vivo, cancer cells have more 
variable access to nutrients and oxygen due to natural tumor 
architecture.[27] Because of these disadvantages, there exists the 
need to find alternate models which better mimic the native 
cancer microenvironment.

3.2. Transwell Model

Transwell assays are used to study the invasion and migration  
of cancer cells.[28] These assays use a cell culture insert made 
of a porous, polymeric membrane that allows for migration 
through the pores.[29,30] Transwell assay applications include 
migration, invasion, and transendothelial migration.[29,30] 
Migration assays, the simplest transwell-based assay, seed 
cancer cells on top of the polymeric membrane insert and 
measure the ability of the cells to translocate though the mem-
brane’s pores.[28–30] Invasion assays are more complex in that 
they add a layer of ECM on top of the porous membrane and 
characterize cancer cell migration through the ECM.[28–30] Tran-
swell assays are used as both a tool for drug screening and a 
model for studying cancer cell migration, invasion, extravasa-
tion, and matrix remodeling. The transwell-based assay serves 
as a straightforward in vitro technique for studying a tumor’s 
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ability to metastasize to a secondary site. However, despite their 
advantages, transwell assays study the motility of individual 
cells and, as a result, are not an optimal tumor model.

3.3. Three-Dimensional Culture Models

Three-dimensional culture models use various matrices or scaf-
folds for cancer cells to grow and ECM, thus mimicking impor-
tant components of the TME. Scaffolds support cell attachment, 
growth, and morphogenesis.[29] These scaffolds are typically 
made from natural or synthetic materials, such as gelatin, col-
lagen, alginate, hyaluronic acid, polyethylene glycol, or poly-
lactide, polylactide-co-glycolide, and various other polymers.[7] 
These scaffold-based approaches are ideal in that they have 
similar mechanical and physical properties to the native ECM 
and TME.[7] More recently, alternative approaches to scaffolds 
have been developed, including the creation of cell spheroids 
via 3D bioprinting.[7] These structures have improved perfusion 
due to their vascularization but are limited by technical chal-
lenges and their capacity to recapitulate complex tissue types.[21] 
Various other methods have been developed, for example, 
the use of nonadhesive polyethylene glycol di-methacrylate 
hydrogel microwells to produce cancer cell multicellular aggre-
gates,[31] hanging drop cultures, and spinner cultures. While 
these methods can be improved upon, these models are an 
important foundation for more novel platforms, such as cancer-
on-a-chip, as they model tumor–tumor cell interactions, native 
ECM, and may be designed to recapitulate the biophysical prop-
erties of native tumor.

3.4. Animal Models

Preclinical animal models are a necessary component in the 
process of anticancer drug development and discovery.[32] These 
in vivo models capture physiological complexity with higher 
fidelity than 2D monoculture techniques.[7] While these models 
have vastly improved our understanding of cancer, they are 
also limited in their capacity. One such shortcoming of animal 
models is their limited translatability to humans. The inability 
of animal models to fully recapitulate human cancer physiology 
is evidenced by the failure in clinical trials of drugs identified 
in preclinical results.[7] To improve the replicative value of in 
vivo animal studies, PDX tumor models have been established. 
PDX models are created by implanting cancer cells or tissues 
derived from patient tumors into immunodeficient mice.[33] 
PDX models are used extensively in cancer research, as they 
simulate human tumor biology in vivo. While these models 
better replicate human tumor biology, the use of immunocom-
promised animals impedes analysis of the immune system’s 
response to a tumor.[17,34] An additional challenge with PDX 
models is the establishment rate. Previous research reports 
a successful formation rate of implanted tumors as being 
39.2%.[35] As animal models are expensive, highly regulated, 
and limited by a low initiation rate, there are constraints to 
the number of studies that can be done, preventing the PDX 
model from being a high-throughput assay. In addition, the 
procedure of creating PDX models takes months to establish, 

making PDXs logistically difficult for use in making timely 
clinical decisions.[36] Despite their advantages, animal models 
do not practically allow for the high-throughput assessment 
of multiple combinations of chemotherapeutics, highlighting 
further the need for high-throughput platforms to be used in 
precision medicine to identify anticancer drugs on a patient-
specific basis. A thorough discussion of preclinical models and 
their advantages and disadvantages can be found in previously 
published reviews.[14,26,28,37]

4. Cancer-on-a-Chip Platform

4.1. Organ-on-a-Chip Structure and Function

In recent years, organ-on-a-chip platforms have significantly 
advanced for several applications, such as preclinical drug 
screening and disease modeling. Organs-on-a-chip are micro-
devices with miniaturized tissues to model human organ 
physiology in vitro.[38–41] Organ-on-a-chip devices incorpo-
rate microfluidics with 3D tissues to recapitulate native organ 
complexity and cues, for example, electrical signals, fluid flow, 
and biochemical cues. Organ-on-a-chip has many advantages, 
including improved recapitulation of native microenviron-
ment, simplicity, decreased cost, and reproducibility. The 
microfluidic chip components are traditionally made of poly-
dimethylsiloxane (PDMS), which has ideal properties, such as 
transparency, low toxicity to cells, and high permeability to O2 
and CO2 gases.[39] Cells are cultured in small chambers within 
these miniature chips, either in 2D monolayers or 3D sus-
pensions, to emulate organ tissues. Membranes may be inte-
grated into the microfluidic chips, creating multiple channels 
and separating the cells.[40–47] The microfluidic components of 
organ-on-a-chip platforms recapitulate in vivo conditions, such 
as flow, pressure, and nutrient levels. Organs-on-a-chip are also 
able to expose the cells or tissues to controlled laminar flow 
of fluids, improving the accuracy of biomarker identification 
and drug screening.[48] Examples of organ-on-a-chip platforms 
include thrombosis-on-a-chip,[49] alveolus-on-a-chip,[50] lung-
on-a-chip,[45] and gut-on-a-chip.[45] More details of organ-on-a-
chip development and applications can be found in previously 
published reviews.[38,51,52]

4.2. Organ-on-a-Chip Advantages

Organ-on-a-chip platforms are miniaturized, reducing the 
required sample sizes and materials consumed during in vitro 
testing.[53] As a result, organ-on-a-chip testing is less costly 
than alternative preclinical models, such as animals. In addi-
tion, organs-on-a-chip perhaps offer an ethical advantage and 
alternative to animal models. Due to the miniaturized nature of 
these platforms, it has become possible to use materials from 
a single animal to run hundreds of tests, instead of running a 
single test on hundreds of animals. The small size and low cost 
of organs-on-a-chip allow for accelerated research and testing, 
as many samples can be run on one device. Another advantage 
of organs-on-a-chip is the ability to recapitulate native microen-
vironments, modeling mechanical stresses, nutrient diffusion, 
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and fluid flow, for example. These advantages have sparked 
interest in combining organ-on-a-chip platforms with other 3D 
models, such as organoid cultures. While 3D organoids may 
recapitulate a singular organ, organ-on-chip platforms mimic 
how these organs interact with their in vitro environment. 
Further discussion on the combination of 3D organoid cultures 
with organs-on-a-chip can be found in recent reviews.[53,54]

4.3. Cancer-on-a-Chip Platforms

Cancer-on-a-chip platforms were developed by using cancer and 
tumor-derived cells and matrix materials inside of previously 
developed cancer-on-a-chip platforms. The microfluidic devices 
developed for organ-on-a-chip platforms have been shown to be 
promising for applications in large-scale, high-throughput anti-
cancer drug screening, study of metastatic cancer processes, 
and screening of drugs against a patient’s individual tumor 
(personalized medicine).[7,13,21,55] In the subsequent sections, 
we will focus our discussion on cancer-on-a-chip models that 
recapitulate components of the TME. A discussion of cancer-
on-a-chip to evaluate nanomedicine[19] and for personalized 
medicine applications[56] can be found in recently published 
reviews.

5. Applications of Cancer-on-a-Chip Technologies

The development of cancer-on-a-chip systems has greatly 
expanded the ability of in vitro models to recapitulate the TME. 
With the recent development of dynamic culture systems and 
the advent of organ-on-a-chip platforms, which offer spatially 
and temporally controlled microenvironments, the improved 
cancer modeling has become an attractive prospect for stud-
ying both cancer biology and treatment options.[57] Although 

this field is still in its infantile stage, its progress is expected 
to grow exponentially. Cancer-on-a-chip models offer many 
advantages. First, they allow researchers to mimic elements 
of the TME in isolation or in concert, including the addition 
of cancer cells to stromal cells, immune constituents, vas-
culature, and oxygen, nutrient, or growth factor gradients. 
Cancer-on-a-chip systems also allow for noninvasive real-time 
monitoring of crucial cellular parameters and recapitulate 
the complex cellular and extracellular microenvironment of 
tumors. These abilities allow for the investigation into the role 
microenvironmental features play in the progressing stages of 
cancer metastasis.[24]

Cancer-on-a-chip models have been used to evaluate aspects 
of cancer biology in several different malignancies, exam-
ining local tumor invasion, metastasis and angiogenesis, as 
well as serving as models for immunotherapy research and 
drug screening.[4,7,29] These studies examined several types of 
cancer as model systems, including some of the most common 
and deadly cancers, for example, breast,[36,58,59] lung,[20,60] and 
pancreatic cancer.[15] It is very important to work on these 
frontiers, but, nevertheless, other cancer models should be 
developed both to address special characteristics and the sub-
types of cancers, as well as the comprehensive spectrum of 
cancers, including those of the head and neck. A summary of 
the cancer-on-a-chip studies discussed in the manuscript can be 
found in Table 1.

5.1. Cancer-on-a-Chip Systems Model Tumor Morphology 
and Drug Response with High Fidelity

Cancer-on-a-chip systems that recapitulate in vivo cancers 
and tumors are fundamental to improved strategies for anti-
cancer drug selection. In 2014, Vidi et al. developed a cancer-
on-a-chip model, mimicking cancer mammary ducts.[61] The 
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Table 1. Summary of cancer-on-a-chip studies.

No. Cancer type Method Result Authors Year Ref.

1. Breast cancer Microfluidic 3D in vitro model for breast cancer  

metastasis to bone

3D in vitro data on extravasation and micrometas-

tasis generation of breast cancer cells within bone 

microenvironment

Bersini et al. 2014 [59]

2. Breast cancer 3D bone-on-a-chip for bone metastasis study of breast 

cancer cells

Unique hallmarks of breast cancer bone colonization 

observed, previously only seen in vivo

Hao et al. 2018 [58]

3. Breast cancer Disease-on-a-chip model in which cancer grows within 

phenotypically normal breast luminal epithelium on 

semicircular acrylic supports

Mimicry of tumor environment provides a framework 

for the design and test of anticancer therapies.

Vidi et al. 2014 [61]

4. Breast cancer 3D high-throughput microfluidic platform for screening 

of three triple negative breast cancer lines against 

several anticancer drugs

High-throughput organ-on-a-chip platform to select 

therapies in personalized medicine

Lanz et al. 2017 [36]

5. Cancer immune 

interactions

Organ-on-chip tool to evaluate cancer–immune cell 

interactions

Quantitative confirmation of the essential role of FPR1 

in cancer chemotherapy response

Biselli et al. 2017 [66]

6. Lung cancer Multiorgan microfluidic chip mimicking in vivo micro-

environment of lung cancer metastasis

Multiorgan system provides useful tool to investigate 

cell–cell interactions in metastasis.

Xu et al. 2016 [20]

7. Lung Organ-on-a-chip model recapitulates orthotopic lung 

cancer growth and therapeutic response.

Discovery of mechanical stimuli dependent TKI therapy 

resistance

Hassell 

et al.

2017 [60]

8. Pancreatic ductal 

adeno-carcinoma

Microfluidic 3D platform for culturing pancreatic ductal 

adenocarcinoma cells

Growth characteristics closer to those of cells grown as 

spheroids than as classical 2D in vitro cultures

Beer et al. 2017 [15]
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breast-on-a-chip device was comprised of a breast luminal epi-
thelium monolayer on a semicircular acrylic support. Tumor 
cells grown in these channels were different morphologically 
than the same cells cultured on a traditional flat surface. Addi-
tionally, tumor nodules cultured in these channels displayed 
a different anticancer drug sensitivity compared to their flat 
and monoculture counterparts, providing new insight for the 
design and testing of cancer therapies.

An important component of developing a new platform is 
the comparison of its results to the existing standard. In 2017, 
Beer et al. compared their pancreatic ductal adenocarcinoma-
on-a-chip model to other in vitro and to in vivo PDX models 
(Figure 1).[15] Their HepaChip consisted of eight chambers, 
each containing three 1 mm × 60 µm cell culture regions, 
which were coated with collagen. These cell culture regions 
were irradiated by UV light, creating acid groups to which 
collagen was bound. Electrodes were integrated on the wall 
of each chamber, creating dielectrophoretic forces. Pancre-
atic ductal adenocarcinoma (PDAC) human cell lines were 
cultured inside of the polymer chambers. The combination 
of microfluidics and dielectrophoresis assembled in vitro 
micro-organs. The experimental results show morphological 
and growth characteristics more like that of spheroid cultures 
than the 2D culture. Compared to traditional 2D preclinical 
platforms, the HepaChip model is better at capturing cell–cell 
and cell–ECM interactions, and thus it is more biomimetic, 
representing a more predictive model with potential to be 
useful in the development of personalized pancreatic cancer 
treatment.

Another more recent study by Lanz et al. utilized breast 
cancer cell lines for developing a high-throughput breast-
cancer-on-a-chip to study the response of triple negative 
breast cancer cell lines (MDA-MB-453, MDA-MB-231, 
AND HC1937) to anticancer therapeutic drugs (pax-
litaxel, olaparib, and cisplastin).[36] Several conditions were 

evaluated, including cell seeding density, ECM composition, 
biomechanical conditions, and the response to therapy, as 
compared to those seen in 2D cultures.[36] Differences in drug 
response were observed in different ECM materials (Matrigel 
vs BME2rgf vs collagen 1). This microfluidic platform allowed 
for the simultaneous culture of 96 perfused microtissues 
(≈10 cells per data point). Additional advantages include the 
use of small quantities of material and the ability to perform 
drug screening using patient-derived samples. This strategy 
is a vast improvement from previous 3D culture techniques, 
as it allows for constant perfusion of the culture medium. 
While the tested system did not entirely capture in vivo com-
plexities, this strategy presents a more high-throughput and 
efficient system for testing and raises the possibility for use 
in developing personalized medicine by determining appro-
priate drug sensitivity and predicting individual patient 
response in a real-time fashion.

5.2. Cancer-on-Chip Systems Model Mechanical Properties 
of the Tumor Microenvironment

In addition to modeling tumor morphology and drug 
response, cancer-on-a-chip platforms also offer improved 
modeling of the TME’s mechanical properties, such as 
its stiffness, which plays a role in cancer progression.[62] 
In 2017, Hassell et al. studied non-small-cell lung cancer 
(NSCLC) in an organ-on-a-chip device (Figure 2).[60] This 
NSCLC-on-a-chip model recapitulated organ microenvi-
ronment-specific growth, tumor dormancy, and response 
to tyrosine kinase inhibitor (TKI), a therapy used in vivo 
in human patients. This new platform revealed a newly 
observed mechanical sensitivity of NSCLCs. TKI therapeutic 
response was discovered to be sensitive to the physical cues 
of breathing motions, with mechanical breathing motions 

Small 2019, 15, 1901985

Figure 1. Photographs and simulation of the HepaChip. A) Image of the chip, with eight culture chambers, fluid inlet and outlet, and gold electrodes. 
B) Enlarged view of single chamber, with two electrodes and three assembly ridges. C) Simulation of the flow and cell trajectory inside of the culture 
chamber. D) Live/dead staining of BxPC3, growing on the assembly ridge. E) Live/dead staining of PANC1, spread on well channel walls and bottom. 
F) Mitosis of MxPC3, observed after 16 h culture. Reproduced under the terms of the Creative Commons Attribution 4.0 International License.[15] 
Copyright 2017, The Author(s). Published by Springer Nature.
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perhaps suppressing NSCLC response to TKI therapy. This 
new finding elucidates understanding of NSCLC and can 
help to explain therapy resistance in patients with lung tissue 
that remains aerated and mobile, as mechanical strain leads 
to the downregulation of epidermal growth factor receptor 
(EGFR), which is partly responsible for decreased response 
to therapy in persistent tumors.[60] The understanding of this 
previously unstudied mechanism has implications in future 
mitigation of drug resistance and development of efficacious 
therapies.

These findings further validate the need for the develop-
ment of dynamic systems and platforms, which take into con-
sideration the components of the TME.[63] Future work need 
not only consider traditional properties, such as cell type and 
ECM, but also dynamic properties, such as mechanical stiff-
ness, to mimic in vivo events and develop more reliable pre-
dictive models.

5.3. Cancer-on-Chip Systems Model Tumor Immune 
Microenvironment

Immune system elements play a large role in the TME, 
with crosstalk between the immune and cellular TME 
components.[64] Interactions within the TME contribute to 
cancer initiation (carcinogenesis), progression, and metastasis. 
After a tumor escapes immune recognition, the TME affects 

immune cell behavior and the two play a synergistic role in 
tumor progression.[65] Organ-on-a-chip platforms can be useful 
in the development of immuno-oncology models. Such a model 
was shown by Biselli et al. in their work on mononuclear and 
cancer cells (Figure 3).[66] The presented cancer-on-chip model 
studied the crosstalk between immune cells, leukocytes, and 
human breast cancer cells treated with chemotherapeutics.[76] 
The study compared leukocytes with and without the FRP1 
gene and concluded that leukocytes lacking the FPR1 gene 
do not recognize the chemotherapy-treated cells, while leuko-
cytes with expression of FPR1 perform random walks, drifting 
toward the tumor cells and establishing persistent interac-
tions with them.[66] These findings demonstrate the capacity 
and necessity to develop immune-oncology methods using 
the organ-on-a-chip platform, as immune response is a key 
component of the in vivo environment (evidenced by the cell–
cell interactions of immune and tumor cells).[66,67] A detailed 
discussion on crosstalk between the TME and immune system 
can be found in a recent review paper.[64]

5.4. Cancer-on-Chip Systems Model Tumor Angiogenesis, 
Microvasculature, and Lymphatics

Angiogenesis plays a critical role in both the growth and 
metastatic spread of tumor cells.[68,69] The TME can regulate 

Small 2019, 15, 1901985

Figure 2. Human orthotopic lung cancer-on-a-chip model. A) Schematic of a cross section through the designed microfluidic chip. B) Microscopy 
image of a cross section of the two central channels of the alveolus chip taken via fluorescence microscopy. C) Immunofluorescence microscopy image 
of a cluster of GFP labeled NSCLC cells, implanted in the airway chip. D) Quantification of NSCLC densities after implantation in the chip. E) Growth 
pattern of GFP labeled lung cancer cells within the epithelial monolayer. F) Lung cancer cell growth dynamics. Reproduced with permission.[60] 
Copyright 2017, Elsevier.
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angiogenesis, via ECM molecules and growth factors within 
the TME.[70] Increased vascularity has been observed, even 
in the bone marrow, in patients with hematological malig-
nancies.[68] Despite this observation, the role of angiogen-
esis in regulating hematological malignancies is not well 
understood.[68] In 2016, Zheng et al. used a 3D microfluidic 
angiogenesis-on-a-chip to study the unique morphogenic sig-
natures of angiogenesis induced by leukemic cells, with or 
without bone marrow stromal cell coculture.[68] The micro-
fluidic device was fabricated from PDMS by soft lithography,  
forming three parallel microchannels, separated by trapezoidal 
posts. The central channel was filled with collagen type I  
and the side channels with endothelial and leukemia derived 
cells. The role of leukemic cells on angiogenic induction and 
vessel formation was observed. This model has not yet been 
achieved via existing 2D culture techniques. Angiogenesis 
in the bone marrow is a highly dynamic process and is criti-
cally dependent on both cell–cell and cell–matrix interactions, 
which are abundant in the native bone marrow microenviron-
ment, presenting the critical need for functional angiogenic 
assays.

The lymphatic system serves as a method through which 
many cancers can disseminate. New microfluidic flow sys-
tems make it possible to study the role of lymphatic capillary 
microenvironment in the lymphatic invasion of mammary 
adenocarcinoma cells.[69] This platform allows for the quantifi-
cation of cell transmigration and its dynamics, revealing that 
both luminal and transluminal flow are important in increasing 
tumor transmigration, as opposed to the previous belief that 
this behavior was a result of luminal flow alone. This study 
provides new insights on flow-mediated regulation of lym-
phatic tumor migration and presents a new tool for exploration 

of cancer therapy, allowing for medium-to-high throughput 
studies.

5.5. Cancer-on-Chip Systems Model Cancer Invasion 
and Metastasis

Cancer metastases contribute to over 90% of cancer-related 
mortalities.[71] Thus, the use of experimental models to effec-
tively represent the metastatic microenvironment is war-
ranted. Metastasis-on-a-chip platforms allow for the study of 
important aspects of the metastasis process, such as physi-
ochemical factors from the tumor stroma and heterocellular 
interactions, which influence cell migration, as well as phys-
icochemical gradients, which lead to tumor cell motility and 
invasion.[21] An early study to visualize metastatic progression 
in 2007 by Yates et al. developed a system to visualize the inter-
actions between tumor cells and target organs to which they 
metastasize.[72] This study investigated hepatic cells with pros-
tate and breast carcinoma cells, examining tumor cell inva-
sion and expansion. They found that tumor cells were unable 
to grow without a supporting hepatic microtissue, due to  
the absence of paracrine functionality or liver structure sup-
port. The developed system served as a crucial model for 
examining tumor–host interactions during the processes of 
metastasis and invasion, circumventing the limitations of pre-
vious models.

More recently, microfluidic metastasis-on-a-chip models have 
been designed to more accurately study cancer progression.[59] 
These studies investigate the various stages of cancer metas-
tasis, lymphangiogenesis,[73] and angiogenesis, intravasa-
tion,[74,75] arrest, organ-specific extravasation,[76–79] and the 

Small 2019, 15, 1901985

Figure 3. A) General schematic of the immune-oncology chip, whose design features six reservoirs for cell loading and culture medium replacement 
and four compartments for cell culture. B) Detailed view of the four chambers. C) Picture of the whole device. D–F) Trajectories of FPR1 CC cells, FPR1 
CA cells, and FPR1 AA cells, respectively. Reproduced under the terms of the Creative Commons Attribution 4.0 International License.[66] Copyright 2017, 
The Author(s). Published by Springer Nature.
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formation of micro-metastases. Additionally, studies looked 
at invasion rate as a method for studying cancer.[80] In 2018, 
Hao et al. developed a bone-on-a-chip model to aid in the 
study of breast cancer metastasis to bone tissue.[58] This new 
bone-on-a-chip design is miniaturized, increasing experimental 
throughput, and facilitates easy and frequent observations. Fun-
damental markers of breast cancer colonization of the bone 
were observed and confirmed with in vivo collected data.

Another organ-on-a-chip study constructed a multiorgan 
microfluidic chip platform to investigate lung cancer metas-
tasis.[20] This multi-organ-on-a-chip system consisted of four 
organs, one upstream lung and three downstream organs, 
with three parallel microchannels formed by PDMS. Bron-
chial epithelial, lung cancer, microvascular endothelia, and 
fibroblast cells were grown in the lung organ, and astrocytes, 
osteocytes, and hepatocytes were grown in the three down-
stream organs, mimicking the metastasis of lung cancer to 
the brain, bone, and liver. Damage to the astrocytes, osteo-
cytes, and hepatocytes validated metastasis in the organs-on-
a-chip system.

Migration and invasion studies in cancer-on-a-chip models 
improved upon more traditional assays, such as transwell cul-
tures and scratch-wound assays. Recent work from Toh et al. 
utilized a microfluidic cancer-on-chip cell migration model 
which resolved different aspects of cell intravasation (the 
invasion of cancer cells into a blood or lymphatic vessel) in a 
biologically relevant 3D microenvironment.[81] The described 
platform incorporates a 3D microenvironment, which plays 
a critical role in the invasive properties of cancer cells, with 
a microfluidic system, creating an appealing model for the 
testing of antimigration and anti-invasion cancer drugs, which 
can be multiplexed to allow for high-throughput assays. The 
development of new tumor models will be crucial in improving 
management of cancers and the prognosis of cancer patients 
and, as a result, may help ultimately in the reduction of health-
care costs.[82]

5.6. Cancer-on-Chip Systems for Use in Chemotaxis Studies

The cell types and factors in the TME influence the occur-
rence of cancer migration modes.[83] Microfluidic organ-on-
a-chip systems have been used to study the chemotaxis, or 
migration due to chemical gradients, of cancer cells.[84] Aung 
et al. developed a cancer-on-a-chip platform with cancer 
spheroids encapsulated in gelatin methacryloyl (GelMA) 
hydrogel, surrounded by an endothelial cell barrier.[84] For 
this study, investigators harnessed the chemoattracted-
induced motility of human umbilical vein endothelial cells 
(HUVEC) and cancer spheroids to control organization 
within the microfluidic device. Cancer cell migration was 
observed in relation to the presence and location of the 
chemotactic source. Although this study uses an endothe-
lial cell–cancer cell coculture, this approach provides a 
framework for establishing platforms with the same level 
of complexity as physiological tumors. These models bridge 
the gap between in vitro cell culture and in vivo animal 
experiments and serve as a promising platform for studying 
tumor behaviors in the vascular system.[85] More complex, 

hybrid cancer-on-a-chip models incorporate 3D tumor tissue 
models, such as spheroids, resulting in more advanced and 
high-performance models.[86,87] In the future, these models 
will have elucidated mechanisms for cancer invasion, such 
as chemotaxis, and present the possibility of developing 
migration inhibitory drugs.[84]

5.7. Cancer-on-a-Chip Platform for Cancer Treatment 
and Drug Development

Improved 3D culture models have been developed with 
the prospect of accelerating the selection of therapies by 
improving the ability to predict anticancer drug responses.[36] 
One avenue of new cancer-on-a-chip studies involves the 
use of 3D microfluidic devices for improved anticancer drug 
screening and selection. Examples of these new strategies 
include a 3D high-throughput perfused microfluidic platform 
for testing new breast cancer therapies, developed by Lanz 
et al. (Figure 4),[36] and microfluidic platform for studying 
biomolecular characteristics of pancreatic ductal adenocarci-
noma cells, developed by Beer et al.[15] These strategies employ 
microfluidic-based devices, which show promise to be used 
for personalized pharmacological testing. Microfluidic sys-
tems can be employed for the fabrication of drug delivery sys-
tems having precisely controlled size and shape, rigidity, as 
well as drug-loading. In addition, microfluidic systems can be 
efficiently used for the evaluation of drug-releasing prepara-
tions.[88] Because organ-on-a-chip platforms can recapitulate 
human physiology and pathophysiology, they can be effectively 
helpful in translating new therapeutics to the clinic including 
advanced nanomedicine.[19]

Hassell et al. found that microenvironmental cues elicited 
by cells, as well as mechanical cues, significantly influence 
non-small-cell lung cancer growth in vitro.[60] More impor-
tantly, their data demonstrate the ability of orthotopic cancer 
chip models to mimic growth patterns observed in vivo in 
patients and is consistent with that of human clinical trials, a 
feature which had not previously been recapitulated in vitro.[60] 
Other strategies to mimic the TME include the use of multi-
cellular aggregates (“microtumors”) of subtype-specific breast 
cancer cells, by Singh et al.,[31] human-on-chip microvascular 
assay for visualization of tumor cell extravasation dynamics, 
by Chen et al.,[76] as well as development of an array of gut-on-
a-chips for drug development.[89] The ultimate value in these 
new developments lies in their potential to allow for high-
throughput drug screening of chemotherapeutics on ex vivo 
models of individual patients’ tumors.

6. High-Throughput Cancer-on-a-Chip Studies 
for Large Data Generation

Cancer-on-a-chip models are advantageous for preclinical drug 
screening, as they can be designed to allow for high-throughput 
analysis of antitumor drug response and other biological 
parameters.[19,90] In order to generate the large quantities of data 
needed to appropriately predict drug efficacy and potential side 
effects, as seen in clinical trials, high-throughput systems need 
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to be developed. With the use of cancer-on-a-chip platforms, this 
type of large data creation and large-scale analysis is possible.

6.1. Large Data Generating Cancer-on-a-Chip Studies

In order to perform high-throughput studies, a large number 
of devices must be fabricated with high fidelity, reproducibility, 
and homogeneity or a device must have the capacity to run 
many tests on a single chip. In 2017, Chen et al. published a 
protocol extension describing the fabrication of a microfluidic 
device for modeling early metastasis in Nature Protocols.[76] 
Their device was made from PDMS and featured three 

hydrogel regions, separated by channels for media. Microposts 
marked the device between each region. The central region 
was filled with a fibrin gel and HUVEC suspension and the 
two peripheral regions were filled with a fibrin gel and human 
lung fibroblast suspension. Their device served as a model for 
microcirculation, representing transendothelial migration and 
early metastasis. They reported the capacity to fabricate and 
seed up to 36 devices at a time without impacting cell viability. 
Coupled with rapid quantification, their large number of 
devices per experiment is expected to allow for high parametric 
and throughput study, generating a large quantity of data.[86]

To address the challenges associated with current in vitro 
and in vivo preclinical models, such as the need for large 

Small 2019, 15, 1901985

Figure 4. Microtiter cancer-on-a-chip plate for anticancer breast cancer drug testing. A) Photo of the OrganoPlate platform. B–D) Closeup, top, and 
side view of an individual channel, respectively. E) Photo demonstrating the filling of an ECM channel. F) Epifluorescence microscopy images showing 
morphology and viability of MDA-MB-453 in Matrigel, BME2rgf, and collagen I, under both static and perfusion conditions. G) Quantification of the 
effect of ECM composition, seeding density, and perfusion or static conditions on cell viability. Reproduced under the terms of the Creative Commons 
Attribution 4.0 International License.[36] Copyright 2017, The Author(s). Published by Springer Nature.
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numbers of cell or animal materials, researchers have devel-
oped microdevices with up to thousands of microwells, 
allowing for high-throughput testing. In 2014, Zhang et al. 
developed a microfluidic device with 4000 ultraminiaturized 
wells for high-throughput monitoring of chemotactic migra-
tion and invasion.[91] Their multiwell invasion (MI) chip was 
fabricated from PDMS using photolithography. The MI chip 
was comprised of four compartments, each containing 10, 
10 × 10 microwell arrays, equaling 4000 microwells. They fabri-
cated both round (200 µm diameter) and square (200 × 200 µm) 
wells, with a depth of 160 µm. The MI chips were used to per-
form 3D cell invasion assays with breast cancer cell lines, to 
validate the chip’s capacity to be used as a model for studying 
metastatic breast cancer. The MI chip used a small cell sample 
size (less than 1000 cells), allowing it to be used in the future 
with limited cell sources, such as primary tumor cell samples. 
The chip can be used in the future to run many tests at one 
time or run tests on rare samples, making it a useful future 
tool for clinicians to evaluate the behavior of cancer cells and 
anticancer drug regimens.

Another method for generating large data sets via organ-on-
a-chip is the fabrication of multiple models on a single device. 
To our knowledge, there is not currently published literature 
joining multiple cancer-on-a-chip platforms. However, groups 
have multiplexed organ-on-a-chip devices together for other 
applications. Work in the organ-on-a-chip field reports the 
use of an array of gut-on-a-chip devices joined together, com-
prising a total of 357 gut tubes.[89] The OrganoPlate (shown in 
Figure 5) is a 384-well plate platform housing 40 networks of 
microfluidic channels. Each OrganoPlate housed 40 epithe-
lial gut tubes, which were tested against drug compounds at  

different concentrations to study the effect on epithelial barrier 
integrity. The study generated over 20 000 data points, making 
it the largest reported organ-on-chip data set thus far. This 
study’s high-throughput nature shows the promise of organ-on-
a-chip platforms for use as new, efficient, and reliable preclin-
ical models, with applications in anticancer drug testing.[63,89,92]

6.2. Large Data Management and Extraction of Information

With high-throughput platforms, such as organ-on-a-chip, 
generating unprecedented quantities of data, there lies the 
need for appropriate data management and analysis systems. 
While cancer-on-a-chip platforms have been rapidly developing, 
machine learning algorithms to manage these data have been 
developing in parallel. New data management strategies should 
incorporate four core pillars. The first pillar in data manage-
ment is the hardware implementation of microchips, with 
appropriate sensors and microsystems to measure the desired 
parameters. The second pillar of large data management is data 
collections, transmission, and storage. The third pillar required 
is advanced machine learning algorithms to extract information 
from the available huge data sets. Finally, the fourth pillar con-
cerns the interpretation of obtained data and its applications in 
the discovery of new theories.

Cancer-on-a-chip platform sensors continuously measure 
attributes of all cells within the device. The data flow can be of 
extremely high volume; for example, if there are 50 000 cells 
under investigation, each with 20 measured factors min−1, then 
one would receive ≈2 GB of data each day (variable by the coding 
method of the collected data). With several parallel platforms  

Small 2019, 15, 1901985

Figure 5. A) Photograph of the bottom of an OrganoPlate, showing 40 microfluidic channel networks and the top of a 384 well plate device. B) Zoomed 
in photograph of a single microfluidic channel network, with three channels joining in the center. C,D) Horizontal and vertical cross section. E) 3D 
sketch of the chip, comprised of a tubule, an extracellular matrix gel, and a perfusion lane. Reproduced under the terms of the Creative Commons 
Attribution 4.0 International License.[89] Copyright 2017, The Author(s). Published by Springer Nature.
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and prolonged data collection (potentially months of collection), 
the size of the collected data may be exceedingly large.

After data collection, the next large stage is the big data 
processing. For this purpose, we rely on highly sophisticated 
ML algorithms, which can be divided into two categories: 
supervised or unsupervised learning.[93] These algorithms take 
into consideration the number of cells (N), number of param-
eters or attributes (M), and the number of samples (T). In this 
example, we can define health status as H and assign binary 
values of 0 (dead cell) and 1 (fully healthy cell). After collecting 
big size data, we can build some model (dynamic or otherwise) 
for the relationship between cellular attributes and health. The 
data are typically divided into two parts, with one part (the 
learning portion) used for modeling and the second used for 
validation; the first part should be large enough in size to cap-
ture important mapping relations between the attributes and 
the output status H. Other alternative ML algorithms to be used 
include recurrent type networks with deep learning structure. 
There are many ML algorithms with different concepts and  
criteria. A crucial component to any model, however, is keeping 
the complexity enough to obtain a good generalized model but 
avoid creating unnecessary complexity, which may give high 
errors in the validation and testing phase.

There are other alternative approaches to supervised 
learning which are not discussed in this review. More informa-
tion regarding ML algorithms can be found in other sources.[93] 
Another challenge of big data processing is the interpretation 
of the ML algorithm results. Advanced artificial intelligence 
(AI) algorithms may be used to help human experts interpret 
ML outcomes. The discussed methodologies will aid in the pro-
cessing and interpretation of data collected from future high-
throughput, large data generating studies. With real-time data 
collection and processing, in the future, researchers will be 
able to perform trials on millions of therapeutic agents against 
a patient’s specific tumor. Microfluidics, sensors, computing 
facilities, smart algorithms, and intelligent microautomated 
systems can be joined as the basis of advanced systems for 
next-generation anticancer drug design and development.[57,94]

7. Challenges and Future Work

Recent studies involving cancer-on-a-chip technologies have 
made great strides in better recapitulating the TME and in 
vivo cancer microenvironment. However, there is still work to 
be done identifying the fundamental TME elements needed to 
better mimic cancer tissue, for both the study of cancer biology 
and improved predictive ability of preclinical models for anti-
cancer drug development. The development of personalized 
cancer-on-a-chip platforms for patients’ primary tumor tissues 
will be a large step forward in harnessing the capabilities of 
cancer-on-a-chip platforms. This advancement will result in 
precision medicine and personalized oncology. Incorporation 
of TME elements, such as oxygen concentration and cytokine 
concentration gradients, will increase the complexity of cancer-
on-a-chip models, improving the predictive power of these plat-
forms. Once developed, there will likely be many challenges in 
the adoption of these technologies, that is, standardization and 
validation against current models.

With the adoption of organ-on-a-chip technologies, future 
oncology treatment is expected to be vastly different than today’s 
regimens. As we move toward personalized oncology models, 
one predicted outcome is the use of patient-derived cells and 
extracted ECMs in chip technologies, capturing the biochemical, 
biophysical, and mechanical cues of the in vivo human cancer 
microenvironment. Another advantage of cancer-on-a-chip 
technologies is the capability for high-throughput, personal-
ized screening of anticancer drug treatment and therapies. The 
capabilities of these platforms may also be expanded and used 
for more innovative cancer detection,[51] for example, on-chip 
blood tests to replace bone biopsies for multiple myeloma.[81]

8. Conclusions

Once cancer-on-a-chip technologies are fully realized, 
the current regimented practice of choosing specific 
chemotherapeutics based solely on tumor type will seem impre-
cise and inaccurate. Personalized cancer chemotherapy will 
eventually be adopted and the use of cancer-on-a-chip models 
will become the clinical standard, allowing for more precise 
and individual function-based selection of chemotherapeutics. 
After the predictive power of these models are demonstrated, 
on-a-chip tests will serve a central role in the development and 
approval of new cancer therapeutics, replacing current pre-
clinical models. Adoption of these new technologies will both 
accelerate and decrease the costs of the drug development pro-
cess and increase the precision of cancer therapy, benefiting 
patients, physicians, and care providers, as well as pharmaceu-
tical and insurance companies.
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